
Summary
We are going to implement a 2D approximation simulation of the collision of particles in
hard-body physics, where each particle in the simulation has mass and a gravitational pull, with
the Barnes Hut algorithm. Using the NVIDIA GPUs in the lab, we will optimize a CUDA
implementation, drawing inspiration from a paper published by Burtscher and Pingali[1] and a
paper published by NVIDIA[2]. We will measure the speedup caused by introducing various
optimizations in the CUDA implementation, and we will investigate speedup and approximation
accuracy tradeoffs.

[1]https://iss.oden.utexas.edu/Publications/Papers/burtscher11.pdf
[2]https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-b
ody-simulation-cuda

Webpage
Our project details are hosted at 418.jtromero.com.

Background
Barnes-Hut Algorithm
We will be implementing the tree-based Barnes-Hut algorithm that was introduced in lecture to
perform an N-body approximate simulation for particle collision. To simplify the simulation, we
will refer to the location of the center of mass of a particle as the particle’s position. The
pseudocode for the algorithm is as follows:

For each timestep:
Compute bounding box around all particles
Construct the quadtree based on particle positions
For each particle:

Approximate the force acting on that particle
Update new particle positions

Each timestep must be computed sequentially. The steps listed above within a timestep must
also be computed sequentially (the force approximation computations could potentially be done
in parallel), however each step itself could benefit from parallelism.

Computing the Bounding Box
The bounding box is the smallest rectangle that contains all particles in the simulation. This will
make the space over which we construct the quadtree for one time step finite, but it does not
limit where future particle locations may be. This bounding box will be represented as the root in
our quadtree.

This part of the algorithm could benefit from parallelism. It boils down to finding the minimum
and maximum x and y coordinates across the particles, with comparisons that can be performed
in parallel because the particle positions are fixed at this time.

http://418.jtromero.com


Constructing the Quadtree
We then construct the quadtree over the space contained in the bounding box. Partition the
space into four quadrants, and represent each quadrant as a child of the root node in the
quadtree. Continue to recursively partition any portion of the space that contains more than 1
particle in it until every partition has at most one particle within it. Internal nodes in the quadtree
represent space partitions, and external nodes represent a particle. An example bounded box
containing particles and its corresponding quadtree construction is depicted below:

Figure 1 - Barnes-Hut quadtree example[3]

This portion of the algorithm would benefit from parallelism. Each quadrant can be partitioned in
parallel because particles in different quadrants don’t interfere with each other for the purposes
of further partitioning. There will be one quadtree data structure shared across all threads,
however due to how the quadtree is constructed, two different partitions will expand upon two
different nodes.

Force Approximations
The approximation accuracy is determined by the parameter θ. The approximation comes into
play as particles that are classified ‘far enough’ from a particular particle will be grouped
together with nearby particles that are also ‘far enough’ from the particle for which we are
computing the force acting on it. A particle/cluster of particles represented by an internal node A
is ‘far enough’ from the particle B if the width of the space represented by A divided by the
distance between A’s and B’s centers of mass is greater than θ. When θ = 0, this is equivalent
to using no approximation as each particle’s individual gravitational effect is calculated on each
particle.

This portion of the algorithm would benefit from parallelism. At this time, particle locations are
still fixed, so the computation of the force on each particle can be calculated in a data parallel
model. In addition, there is some degree of potential parallelism when calculating the force



acting on a particle, as particles that aren’t clustered together in the approximation can have its
force on a particular particle calculated in parallel.

The Challenge
The tree-based Barnes-Hut algorithm is naturally and thus commonly framed in a recursive
manner. Specifically, constructing and traversing the quadtree are performed recursively.
However, this recursion is not ideal for CUDA programming as this limits parallelism, since each
thread would be performing a recursive operation that could be further parallelized amongst
more threads. Our first challenge will be to implement the Barnes-Hut in an iterative manner that
allows parallelization.

From there, the main challenge comes with optimizing the CUDA implementation. The
quadtrees are expected to be irregularly shaped and imbalanced since the particles are initially
randomly distributed. As the simulation progresses, we expect the quadtree to remain irregularly
shaped since the particles also start with a random initial velocity, which prevents all the
particles from slowly gravitating towards each other. This presents two major challenges:
divergent execution and many memory operations.

The amount of work required to compute the approximate force on each particle can vary
greatly across each particle depending on how much quadtree traversal is required before a
node is classified as ‘far enough.’ This makes dividing up the workload amongst threads trickier
as the workload is not predictable as far as we can tell right now. For a similar reason, the
memory access patterns will vary across computations and across time step iterations. Pointers
will need to be reassigned as the quadtree is recomputed. There is also potential for spatial
locality with the tree traversal, but this will depend on how we implement our quadtree data
structure. In particular, since we are optimizing a CUDA implementation, we will need to address
the challenge of taking advantage of the CUDA memory hierarchy and handling the divergent
execution especially within thread blocks.

We may also face challenges with regards to synchronization as we will need to determine
when it’s necessary to have synchronizations between thread blocks or kernels.

Through this project, we hope to improve our skills in creating and debugging efficient parallel
programs, gain a deeper understanding of CUDA programming, and expand upon what we’ve
learned in assignment 2 to better tailor our algorithm implementation to be more CUDA friendly.

Resources
We will be using NVIDIA GPUs in the GHC labs, just as we did in assignment 2. We will be
starting our code base from scratch, beginning with creating a sequential implementation of the
Barnes-Hut algorithm before parallelizing and optimizing it. We found two papers that are good
references for our project. The first paper by Burtscher and Pingali[1] provides guidance on
high-level optimizations for a CUDA-implementation of Barnes Hut and the second paper
published by NVIDIA[2] provides a more general discussion of performing N-body simulations on
CUDA without a focus in particular on Barnes-Hut.



[1]https://iss.oden.utexas.edu/Publications/Papers/burtscher11.pdf
[2]https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-b
ody-simulation-cuda
[3]http://arborjs.org/docs/barnes-hut

Goals and Deliverables
Planned Goals
We plan to produce the following deliverables:

● A program that generates a set of particles with random positions, velocities, and
masses given the number of particles as input. This will be used to generate data for
testing.

● A sequential implementation of the Barnes-Hut algorithm that runs entirely on the CPU to
use as a comparison for our parallel implementation.

● A CUDA implementation of the Barnes-Hut algorithm.
○ We are unsure about precise performance goals at this time. While we would like

to achieve similar speedup observed by Burtscher and Pingali, we are using
different hardware which will affect our observations. We will investigate further to
derive a reasonable performance goal, but this may involve first needing to
produce a Barnes-Hut implementation.

● Graphs displaying:
○ The speedup of the CUDA implementation against the sequential CPU-only

implementation for varying number of particles in the simulation.
■ We will use the same parameter θ and the same number of time step

iterations across all the simulations when collecting this data. We will
follow Burtscher and Pingali and use problem sizes of 5000, 50,000,
500,000, 5,000,000, and 50,000,000.

○ The accuracy of the CUDA implementation simulation as a function of the
parameter θ (threshold for ‘far enough’).

■ We will consider calculations with θ = 0 as the accurate values of particle
positions, and use the sum of the squared distance between a particle’s
approximated position and its true position as the cost metric for
accuracy. So the plot will display the cost for parameter θ values of 0.05,
0.5, 1, 5, 50, and 500. We will create this plot for each of the problem
sizes of 5000, 50,000, 500,000, 5,000,000, and 50,000,000 in the
simulation to also observe if there are patterns with problem size and
accuracy.

● A visual rendering of the particles as their location gets updated.
○ This will be similar to the circle rendering in assignment 2. However, we had

issues with rendering the image on our own computers through SSH, so should
we successfully implement this functionality, we may only be able to demo it
directly on a GHC lab machine or have to display a screen recording of a prior
run.



Extension Goals
Should we have extra time, we hope to achieve the following in order as listed:

● Optimizing the CPU-only implementation of the Barnes-Hut algorithm by introducing
parallelism with pthreads.

● Speedup graphs of the parallel CPU-only implementation.
○ We would compare these graphs against the speedup graphs produced by the

CUDA implementation.
● Extra parameters to tune the initial state of the particles. For example, we could ingest

data for the actual positions and masses of stars.

Demo Plan
For the poster session, we will include the speedup and accuracy graphs described above in the
planned goals subsection. As mentioned above, we are facing issues with SSH and XQuartz
compatibility so if we are able to display a visual of the particle collision simulation on our own
computers, we would include this as part of a live demo. However, if this is infeasible, we will
instead include a pre-recorded visual of a simulation and include snapshots of the simulation
over different timesteps.

Platform Choice
We have chosen to use CUDA over the NVIDIA GPUs in the lab. We have used the Barnes-Hut
algorithm throughout this course as a case study, and implementing the CUDA version will allow
us to apply what we’ve learned. Specifically, we can focus on handling divergent execution and
taking advantage of the CUDA memory hierarchy, which is a different angle to approach the
parallelism of Barnes-Hut than what we have seen in lectures which focused on workload
distribution. Since we are familiar with the NVIDIA GPUs in the lab and they are our most
convenient access to GPUs supporting CUDA, it makes the most sense to use them as our
focus is on software implementation development and optimization.

Post-Milestone Revised Schedule
Deadline Date Action Item Completed by Deadline Assignee

Friday, April 19 Complete initial CUDA implementation
without optimizations

Aimee +
Jackson

Saturday, April 20 Produce speedup graphs for unoptimized
CUDA implementation against sequential
implementation

Jackson

Wednesday, April 22 Implement the following control flow
optimizations discussed in the Burtscher
and Pingali paper: minimize thread
divergence, combine operations

Aimee

Thursday, April 25 Implement the following control flow
optimizations discussed in the Burtscher

Jackson



and Pingali paper: throttle threads, minimize
control flow

Saturday, April 27 Implement main memory optimizations
discussed in the Burtscher and Pingali
paper (minimize accesses, etc.)

Aimee

Friday, May 3 Implement lock optimizations discussed in
the Burtscher and Pingali paper (minimize
locks, etc)

Jackson

Friday, May 3 Implement visualization of bodies across
time steps

Aimee

Saturday, May 4 Draft report and collect data and produce
speedup and accuracy graphs

Aimee

Sunday, May 5 Complete final report; Final Report Due Jackson

Monday, May 6 Poster Session Aimee +
Jackson


