
15-418 Project Final Report
Aimee Feng and Jackson Romero

Summary

We have implemented a 2D approximation simulation of the collision of particles in hard-body

physics, where each particle in the simulation has mass and a gravitational pull, with the Barnes

Hut algorithm. Using the NVIDIA GPUs in the lab, we have optimized a CUDA implementation,

drawing inspiration from a paper published by Burtscher and Pingali[1] and a paper published by

NVIDIA[2]. We measured the speedup of the optimized CUDA implementation against a

sequential CPU implementation, and analyzed the tradeoffs between speedup and

approximation accuracy.

Background

Barnes-Hut Algorithm

The Barnes-Hut algorithm provides an approximation for N-body simulations. Particles that are

classified ‘far enough’ from a particular particle will be grouped together with nearby particles

that are also ‘far enough’ from the particle for which we are computing the force acting on it. We

abstract the particle bodies away to be points located at the corresponding center of mass.

Given a set of points and their mass, location, and velocity, one iteration of the Barnes-Hut

Algorithm will produce the updated location and velocity for each point after one time step based

on the gravitational forces acting upon that point.



For N particles, calculating the force that every other particle exerts on a particle is O(N2).

However, Barnes-Hut allows us to perform an approximation as described above in O(N log N).

The key data structure that enables this speedup is the quadtree.

We can divide the Barnes-Hut algorithm into three main steps: (i) constructing the quadtree, (ii)

traversing the quadtree to calculate the force being exerted on each particle, and (iii) updating

the point locations and velocities. Each step is dependent on full completion of the previous

step, so we can only parallelize within each step.

Constructing the Quadtree

We start by finding a bounding box that encapsulates the location of all the points. This

bounding box is the root of our quadtree. Then, partition the space into four quadrants, with

each partition represented by a child of the root in the quadtree. We insert points into the

quadtree structure one at a time by finding the existing quadrant that the point should belong in.

If the quadrant is empty we can insert the point into the quadtree; otherwise, we will recursively

partition until each point is in its own quadrant. Internal nodes in the quadtree represent space

partitions and contain the center of mass and total mass of particles in that space, and external

nodes represent a particle. An example bounded box containing particles and its corresponding

quadtree construction is depicted below in Figure 1.

Parallelizing the quadtree construction is difficult because the threads must update a common

quadtree representation and pointer chasing when traversing trees takes longer memory

read/write times with less locality. In addition, parallelizing over SIMD adds another layer of

difficulty as points can lie in various levels and locations of the quadtree, leading to thread

divergence. Building tree data structures, including this quadtree, is a naturally recursive

process; however, recursion doesn’t work well on GPUs as there is too much overhead with



each thread in a warp needing to perform the same number of recursive calls, so we needed to

build and traverse the quadtree iteratively.

Figure 1 - Barnes-Hut quadtree example[3]

Despite these difficulties, there is still potential for SIMD parallelism. Points located in different

quadrants and thus different parts of the quadtree can be inserted in parallel, as they do not

interfere with each other’s quadtree modifications. Furthermore, modifications due to point

insertion only affect one existing quadrant, so most points will not interfere with each other in

quadtree updates. In addition, we can implement the quadtree data structure with arrays to

improve locality and minimize random memory accesses from pointer chasing. We describe this

in more detail in the Approach section.

Force Approximations Traversing the Quadtree

To approximate forces, we use the parameter θ to determine what is considered ‘far enough’ to

start grouping particles together. A particle/cluster of particles represented by an internal node A

is ‘far enough’ from the particle B if the width of the space represented by A divided by the

distance between A’s and B’s centers of mass is greater than θ. When θ = 0, this is equivalent

to using no approximation as each particle’s individual gravitational effect is calculated on each

particle. Figure 2 shows an example where a group of points are sufficiently ‘far enough’



determined by parameter θ to be clustered together into one aggregate point, so the center of

mass and mass of the marked inner node can be used for force calculation without needing

further tree traversal.

Figure 2 - Approximating Force from ‘Far Enough’ Points[3]

This step is data-parallel because we are only reading information stored in the quadtree, so

there are no concurrency issues with respect to shared memory modifications. We can again

parallelize across points, with each thread calculating the force exerted on a point; however,

parallelizing over SIMD is difficult due to divergent thread execution since points located at

different depths in the quadtree will require a different number of iterations in tree traversal, and

different points can aggregate a different number of particles into clusters. As described above,

a classic tree representation would also involve many random memory accesses from pointer

chasing. Using the array representation will also improve parallelism here by increasing locality

from removing pointer chasing.

Updating Particle Locations and Velocities

Once we have calculated the aggregate force acting on a particle, we can apply the uniform

motion formula (xnew = xold + dx * timestep) and Newton’s second law of motion (F = ma) to find



the updated location and velocity. This step is ideal for SIMD parallelization, as it is data-parallel

and threads in the same warp can perform the arithmetic in lock-step.

Approach

We implemented Barnes-Hut sequentially on the CPU and parallelized with CUDA on the GPU.

We targeted and tested our implementation on the NVIDIA GPUs in the lab.

CPU Implementation

Our sequential implementation is a naive Barnes-Hut implementation. The purpose of this

implementation was to provide a benchmark for the CUDA implementation, so we did not

implement any optimizations. This version uses a classic tree data structure with ‘struct

TreeNode’ representing a node in the quadtree containing pointers to its children.

GPU Implementation

We modeled our implementation after the implementation presented by Burtscher and Pingali:

Figure 3 - Pseudocode Presented by Burtscher and Pingali[1]

Each bold step in Figure 3 above represents a separate kernel launch. Through reading

Burtscher and Pingali’s[1] findings, we discovered that much of the optimizations rely on the

quadtree being implemented over arrays. Thus, our first attempt at a CUDA implementation



used arrays for the quadtree rather than the classic tree node representation for the quadtree.

We implemented step 1 using the thrust library to find the minimum and maximum x- and y-

coordinates for the bounding box. Steps 2 through 6 were more involved, so we will discuss

them in more detail. In our code, we separated these steps into separate kernel launches so

that the number of blocks and threads per block could be controlled on a per-kernel basis, which

is especially important for Kernel 5 (ComputeForces), as it is designed to work with a

one-warp-per-block design.

Targeting GPU Optimizations with Array Implementation of Quad Trees

Trees are commonly implemented with a struct representing a node in the tree, and pointers to

children stored as fields in the struct. Thus, tree nodes can be stored anywhere in memory, with

tree traversal causing pointer-chasing to random locations in memory. To increase locality, we

remove the need for pointer-chasing by storing the quadtree data in contiguous sections of

memory with arrays. Each field from the struct implementation is pulled out to be an array, with

the ith index across the arrays corresponding to the same cell/particle in the quadtree as

depicted in Figure 4 below.

Figure 4 - Node Struct to Array Conversion[1]



We use a separate array childNodes to store indices of the children of an inner cell. An inner

cell whose information is stored at index i in the field arrays will have the indices of where the

information for the children nodes can be found at i*4, i*4+1, i*4+2, and i*4+3. A -1

represents a null pointer, where there is no child node for a specified quadrant yet.

In addition, the information for particles is stored in the same array as the array for quadtree

inner cells in the layout shown in Figure 5. We store particle information from the start of the

array and inner cell information from the end of the array to allow us to easily differentiate

between whether we are looking at a particle or inner cell based on only the index. This also

reduces storage overhead, as we don’t need to add particle information for external cell nodes

that contain a particle, and can instead succinctly represent them with letting children be the

particle itself.

Figure 5 - Array Layout where Array A containing b0, b1, … are particles and Array B containing

c0, c1, … are inner cells. A and B are concatenated, with the quadtree root stored at c0.

Algorithm Modifications for Parallelism

The sequential version combined step 3 with step 2 from Figure 3, keeping track of a running

center of mass and total mass for each inner cell in the quadtree as points were inserted;

however, the CUDA implementation splits these two steps into different kernel launches

because of differing quadtree implementations. Namely, in the sequential version, a TreeNode



struct contains all the information at a node in the quadtree, so spatial locality for fields within

the same struct meant it was ideal to update the node during point insertion once the node had

been fetched from memory. With all the information stored in different arrays, we wanted to

increase locality by minimizing excess memory loads during quadtree construction so that more

relevant lines for building the quadtree could be kept in the cache. Thus, we split this into two

different steps for the CUDA implementation.

Modifying Shared Quadtree over CUDA

When building the quadtree, each thread handles inserting one point into the quadtree that is

shared by all threads across all the thread blocks. We used locks to handle race conditions from

modifying shared memory. Since threads in the same warp run with SIMD execution in

lock-step, we had to put careful consideration into when locks are acquired and released to

avoid deadlock and lost updates. We locked on the childNodes array by using -2 as a

placeholder representing that a thread is currently modifying the subtree rooted at the quadtree

node. Only the node which is being modified by adding new partitions or inserting a point is

locked. Since two threads in the same warp may be trying to acquire the lock on the same cell

at the same time, we avoided race conditions by using an atomicCAS to ensure that at most

one thread held the lock for a node at any time.

Optimizing CUDA Implementation: Thread Divergence

Thread divergence is a major issue when building and traversing the quadtrees. Threads in the

same warp may need to traverse a different number of nodes before reaching the desired cell or

particle, and due to lock-step, all threads in the same warp need to wait for the thread that must

perform the most node traversals to finish before proceeding to the next new instruction. In

addition, introducing locks increases thread divergence as threads in the same warp trying to

acquire the same lock will need to wait to acquire the lock sequentially, forcing all threads in that



warp to also wait. When building the quadtree, we want threads of the same warp to handle

points that don’t interfere with each other’s quadtree modifications, to avoid waiting sequentially

for locks in the same warp. However, when traversing the quadtree for force calculations, thread

divergence only comes from traversing the quadtree, so ideally we want threads in the same

warp to traverse the quadtree in approximately the same way. Points spatially close to each

other are also on similar paths in the quadtree. This is where we introduced kernel 4, which

sorts points such that spatially close points are sorted near each other, to reduce thread

divergence. Kernel 4 does not affect correctness, only performance, and we leave it active by

default unless otherwise specified in our report during experimentation and analysis.

Optimizing CUDA Implementation: Memory Accesses

The quadtree is stored in device memory, which is shared by all the blocks. Updates must be

pushed to device memory for all threads across all blocks to see with the use of slow thread

fences, but when blocks are executing kernels that only involve reading from the quadtree,

these fences aren’t necessary. In addition, the layout of the array leads to nodes being stored

near their children, so loading in contiguous chunks of memory at a time helps decrease

overhead from memory accesses.

Locks for nodes are also stored in device memory as they must be accessible to all threads

across all blocks. Each attempt to acquire the lock and each lock release requires fetching from

device memory, which are slow memory accesses. To reduce excess memory accesses which

can lead to overall slowdown of memory accesses across all threads, we throttle the threads for

attempting to acquire the desired lock. We do this by adding a __syncthreads() call before

each new lock acquisition attempt so that all threads in a block wait for all other threads in the

block to finish quadtree modification if they have a lock. It’s likely that a thread in a different



warp in the same block has the lock, so this throttling decreases the excess memory accesses

for lock acquisition while giving all threads in the block a chance to make progress.

Rendering

We used the CUDA rendering setup from assignment 2 to visualize the Barnes-Hut simulation

over CUDA. We also used the CycleTimer from assignment 2 to measure performance.

Results

Performance Measurement Criteria

We measured performance by taking the CycleTimer provided in assignment 2 of the course to

time each kernel and each time step iteration for the CUDA version, and we timed each time

step iteration for the CPU version. We compared the runtime from the average of 20 iterations of

the CUDA version against the CPU version to calculate speedup across varying problem sizes

(number of particles in the simulation).

To measure simulation accuracy, we took the squared distance of particles for a given

parameter θ after 20 timestep iterations of the CUDA simulation from their corresponding

location after running the CPU version with θ = 0 for 20 timestep iterations. We also took the

squared difference in the resulting velocities, calculated by taking the square root of the sum of

the squared x- and y-components of the velocity.

Speedup Across Problem Sizes

Our baseline for measuring speedup is the CPU implementation. We use θ = 0.9 for these

simulations, and take the runtime averaged across 20 timestep iterations for both the CPU and

GPU versions. Since we launch a thread to handle each point throughout the algorithm, we

expect that for simulating X points, we see an X-times speedup. The speedup graph is shown

below in Figure 6.



Figure 6 - Speedup of CUDA implementation over naive CPU implementation

We’d like to note that in the paper we reference by Burtscher and Pingali[1], their analysis uses

an optimized serial CPU implementation, whereas we are benchmarking against a naive serial

implementation to analyze the potential improvements from optimizations on top of

parallelization over GPU.

Similar to Burtscher and Pingali[1], we see that as the problem size increases, the speedup also

increases at a greater rate because more points provides greater opportunity for parallelism.

However, across the board, we observe non-ideal speedup, which we believe is due to poor

SIMD utilization from thread divergence and multiple memory accesses. We found that as the

number of particles increases, an increasing percentage of runtime is spent in the kernels that

build the quadtree and traverse the quadtree to compute the total force (shown in Figure 7).

These two kernels have the thread divergence and memory access issues discussed above,

whereas the other kernels are fairly data-parallel and can easily perform arithmetic in lock-step.



Figure 7 - InsertRoot represents the kernel for computing the bounding box. Sort represents

the kernel 4 optimization. Update represents the kernel that updates point locations.

When we add the kernel 4 optimization which approximately sorts points spatially, we see that

the percentage of runtime spent in the kernel computing the total force decreases significantly

(seen in Figure 8 below). This optimization decreases thread divergence within warps, as

threads in the same warp should be computing the force for points located near each other in

the quadtree, so they should be performing very similar access patterns. This shows that thread

divergence is in part responsible for the less than ideal speedup.



Figure 8 - ComputeForces takes a lower percentage of overall time with sorting enabled

We believe that locking and synchronization also adds overhead, as the kernel for building the

quadtree takes a significant percentage of the runtime. In addition, the locking and

synchronization introduces thread divergence and constant memory accesses as discussed

earlier. During development, we found that without throttling threads by removing the

synchronization points, we had a slowdown of around 1000 times, signifying that the memory

accesses from trying to acquire and release locks produces a significant amount of overhead.

Thus, we attribute the less than ideal speedup to locking, thread divergence, and constant

memory accesses.

Kernel Breakdown Across Problem Sizes

The Burtscher and Pingali[1]paper broke a simulation timestep into six kernel launches, and our

implementation used seven. We split the paper’s kernel launch to compute the bounding box

and insert a root node into two separate steps. Our kernels work as follows:

Setup → InsertRoot → BuildQuadTree → Summarize → Sort → ComputeForces → Update



Here, we analyze the impact that each kernel has on the amount of time needed to do a

timestep iteration. We will analyze these results with and without the sorting kernel doing useful

work, as it’s primarily an optimization that coalesces memory accesses in the ComputeForces

kernel.

Figure 9 - All kernels scale roughly linearly, but at different rates

Figure 9 shows the relative increase in a kernel’s runtime as the problem size increases. We

chose 500 bodies as our base amount, so the runtimes for each kernel k are plotted relative to

the time that k took on 500 bodies. So, a point at (1000000, 250) on the Summarize and

Setup plots indicates that these kernels each took 250 times longer on 1 million bodies than

they did on 500 bodies. If their workload increased linearly with the number of bodies, that

would be the dashed Linear line.

What this plot shows us is that certain kernels scale better than others, but that they all scale

roughly linearly (technically nlogn although that isn’t easily seen in the plot). The



ComputeForces kernel takes the most time within each kernel run (as shown above in Figures

7 and 8) and scales the worst without the Sort kernel to speed it up. Introducing the Sort

kernel significantly improves the scaling of ComputeForces:

Figure 10 - ComputeForces scales significantly better with sorting

As one last illustration of the power of the Sort kernel to dramatically increase the raw speed of

ComputeForces, Figure 11 shows how long ComputeForces takes in milliseconds for

different numbers of bodies.



Figure 11 - Sorting dramatically increase the raw speed of ComputeForces

Iteration Time as a Function of θ Across Problem Sizes

We also checked how our average iteration time changed across problem sizes for different

values of θ. As θ increases, more bodies can be ignored and approximated by the center of

mass of a parent node. Because the force calculations work by traversing down from the root of

the quadtree until they either hit a body or an interior node that can be used as an

approximation of its subtree, increasing θ decreases the traversal length as a traversal hits an

interior node that can be used much sooner.

We can see this in a plot of the relative runtime growth across problem sizes for different values

of θ. This is a log vs log plot so that the separation between values of θ is apparent and not

squished by large values.



Figure 12 - Lower values of θ scale worse than larger values of θ

This shows that lower values of θ scale worse than higher values of theta. This makes sense

and matches our expectations, as small values for θ cause the behavior of Barnes-Hut to

approach a naive O(n2) solution as very few nodes can be approximated. Large values of θ

cause most nodes to end their quadtree traversals very quickly, and thus the program scales

better as the number of bodies increases.

Just to demonstrate the effect that θ can have on the absolute runtime of the program, here’s

how the runtime of a timestep iteration on 50,000 bodies changes with θ:



Figure 13 - Increasing θ dramatically increases raw runtime with 50,000 bodies

Accuracy as a Function of θ Across Problem Sizes

Our baseline for measuring accuracy is the CPU implementation for θ=0. For these simulations,

we perform the cost calculation described above after 20 timestep iterations. We generated sets

of 100, 1000, 5000, and 10000 points with initial velocity set to zero, randomly located in the box

bounded by (-1024, -1024) and (1024, 1024), with mass randomly assigned between 0.1 and

100. We tested against the following values of θ: 0.05, 0.5, 1.0, 5.0, 50.0. Running the

sequential version with θ=0 for 20 timestep iterations as a baseline wasn’t reasonable for much

more than 10000 points, as the CPU implementation is a recursive O(N2) implementation. The

graphs displaying the position and velocity cost, calculated as described above, are shown

below. We’d like to note that this magnitude of cost is to be expected given that points are



initially up to 2048 units of distance away, and these costs sum up squared distance of all

points.

Figure 14 - Position and Velocity accuracy for 100 particles across varying theta after 20

simulation iterations



Figure 15 - Position and Velocity accuracy for 1000 particles across varying theta after 20

simulation iterations

Figure 16 - Position and Velocity accuracy for 5000 particles across varying theta after 20

simulation iterations



Figure 17 - Position and Velocity accuracy for 10000 particles across varying theta after 20

simulation iterations

As expected, as parameter θ increases, the cost increases meaning that the approximation is

straying further from the true result. In addition, as the problem size increased, the magnitude of

the cost increased proportionally. Interestingly, for each of the problem sizes, the cost increases

in a sigmoid curve shape as theta increases. At small theta, the cost stays around the same,

before hitting some inflection point and increases significantly, before once again staying around

the same. We believe this is because at some theta, a cluster of particles are grouped as ‘far

enough’ away, leading to the sudden increase in cost as more points are suddenly

approximated. For smaller problem sizes, the cost is significantly less and also are less

sensitive to changes in theta, because the points are more likely to be more dispersed, so the

distances are far enough that they are classified as ‘far enough’ for most values of theta.

Conclusion



Given the speedup results we observed over a naive sequential CPU implementation, we

believe that using the GPU is a good choice to achieve parallelism. Although there are

difficulties with thread divergence and random memory accesses, the benefits from parallelizing

over the GPU still outweighs the overhead from these issues.



References

[1]https://iss.oden.utexas.edu/Publications/Papers/burtscher11.pdf

[2]https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-b

ody-simulation-cuda

[3]http://arborjs.org/docs/barnes-hut

[4]https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Contribution Breakdown

We feel that the work was split evenly (50/50). Our contribution can be broken down as follows:

Contribution Primary Contributor

Project Proposal Aimee

Sequential CPU Barnes-Hut Implementation Aimee

Snapshot visualization of CPU version Aimee

Base CUDA Barnes-Hut Implementation Jackson

CUDA Kernel 4 Optimization Jackson

Thread throttling optimization Aimee, Jackson

Visualization of CUDA version Jackson

Midpoint Report Jackson

Debugging race conditions in CUDA Aimee, Jackson

Testing/experiment environment setup
(creating test cases, cost metric script,
instrument to input/output file)

Aimee

Final Report (minus analysis) Aimee

Data Collection Aimee, Jackson

Final Report - Data Analysis Aimee, Jackson

Website Jackson


